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Abstract. Using the Weisskopf-Wigner theory of line broadening we derive an expression 
for the natural width of the Landau resonance o - k  . 0 = 0. The conditions for the validity 
of the conventional quantum perturbation theory of plasmons, and the collisionless damping 
due to nonresonant electrons are then examined. 

1. Introduction 

In the conventional classical plasma kinetic theory one generally derives the expression 
for the longitudinal dielectric coefficient of a plasma from the self-consistent Vlasov- 
Poisson equations. The collisionless damping of the plasma waves is proportional to the 
imaginary part of the dielectric coefficient appropriate to the retarded boundary condi- 
tions. From quantum theory Pines and Schrieffer (1962) have shown that the dielectric 
coefficient of a plasma can also be obtained from the Einstein A and B coefficients 
appropriate to the Cerenkov emission and absorption of plasmons. According to Pines 
and Schrieffer the collisionless damping of plasma waves is a consequence of a statistical 
balance between the induced emission and absorption of plasmons. In the golden rule 
approximation of the Einstein A and B coefficients one gets only a resonant interaction 
between the electrons and the plasma waves. Consequently, only the electrons whose 
velocities U satisfy the Landau resonance condition o - k  . U = 0 contribute to the colli- 
sionless damping of the plasma waves of frequency o and wavevector k .  It is of course 
physically instructive to examine how the results (ie the expression for the collisionless 
damping) in the golden rule approximation get modified when one makes use of the 
Einstein A and B coefficients in the Weisskopf-Wigner approximation (ie when one 
makes use of the theory of line broadening to Cerenkov transitions in a plasma). We will 
show that, according to the Weisskopf-Wigner theory of line broadening, the resonance 
factor h ( 0 - k .  U) of the results in the golden rule approximation gets replaced by the 
lorentzian factor (yJ7c) {(a - k  . U)’ + y z } -  ’, where yo is the reciprocal of the lifetime of the 
particle state Iu ) .  We may point out that h o y ,  is the total rate of spontaneous emission 
of energy in the form of plasmons by an electron moving with a velocity U. That is, 
Amy, = i?(;pu’)/i?t = p u  . (&/at) 2: ~ u ’ / z , ,  where 5 ,  is the radiative slowing-down time 
of the particle of mass p and velocity U. Clearly y o  << o for the quantum perturbation 
theory of plasmons to be meaningful. This as we shall see later is consistent with the 
familiar notion that the appropriate fine structure constant or the electron-plasmon 
coupling constant q2/hu,  << 1 for the quantum perturbation theory of plasmons to be 
meaningful. Here q is the electronic charge and U ,  is the phase velocity of the plasmon. 
Furthermore, we will show that the collisionless damping due to nonresonant electrons 
is of the order of this coupling constant. 
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2. Derivation 

We consider a gas of electrons of charge q, mass p and number density N in a box of 
volume L3. Let [U) be the quantum state ofone of the electrons and \U') be an energetically 
lower state. In the golden rule approximation, the transition probabilities for absorption 
j A  and emission jE of a plasmon of momentum Ak and energy hw are given by (Pines and 
Schrieffer 1962, Tsytovich 1970, Walters and Harris 1968) 

(1) 

( 2 )  

j ,4(u;  U') = NkM6,?,,-,jp6{u-k. ( u - h k / 2 p ) }  

jE(u' ;  U) = (Nk+ 1)hf6,,,u-w/p6{u-k * ( u - h k / 2 p ) } ,  

where M = (47tZq2w/L3hk2), and Nk represents the number of plasmons. In the Weiss- 
kopf-Wigner approximation, one can easily show that the transition probabilities of (1) 
and (2)  become (Heitler 1954) 

j A ( U ;  8')  N k M G , ' , " - , k , p ( r , / n ) [ { O - - k  ' (u- f i -k /2p)}2+yz1-1  ( 3 )  

j E ( u ' ;  U) ( N k +  1 ) M ~ u ' , u - f i k / p ( y " / 7 t ) [ { w - k  * ( u - h k / 2 C ( ) } 2 + y 3 1 - ' ?  ( 4 )  

and 

respectively, where 

y" N M G { w - k .  ( u - h k / 2 p ) }  
k 

= ( L / ~ z ) ~  sm dk k2 d% 27t sin %MG{(o  + hk2/2p)  - kv cos 0) 
0 

a2 

= ( q 2 / A u ) s  dk(w/k). 
0 

Here % is the angle between the vectors k and U. For plasmons, w is approximately the 
plasma frequency oo = (4nNq2/p)"Z and hence y u  of (5) is logarithmically divergent 
both at small and large k .  However, since w N wo N k . U = ku cos 0, k 2 (wo/u), and 
since the plasmon wavelength must be larger than the plasma Debye length k 6 (wo/uo), 
where uo = (KT/p)'". Here Tis the temperature of the electron gas. Hence 

From (6), one can easily show that (y,/w,) is a maximum when ln(u/uo) = 1 (ie when 
u 1: 2 . 7 ~ 0 ) .  Thus ( y u / ~ o ) m a x  'v (ctc/2.7uO), where U = ( q 2 / h c )  'v &. Hence, for plasmons 
the quantum perturbation theory is meaningful if and only if ( ~ J O , , ) , , , ~ ~  << 1, that is, if 
and only if vo/c  >> aj2.7. This means that any result of the quantum perturbation theory 
of the plasmons is meaningful if and only if the temperature of the electron gas is very 
much greater than 3.7 eV. 

Let NF(u) represent the number ofelectrons per unit volume which are in the quantum 
state \U). By applying the principle of detailed balance for the transition probabilities per 
unit volume of emission and absorption, we get 

duN(F(u)j,(u'; u)-F(u')jA(u; U')) 
at = s  ( 7 )  
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for a nondegenerate electron gas. If we assume N ,  = 0 at t = 0, then the solution of (7) is 
of the form N, cc { 1 - exp( - 2 Y k t ) } ,  where 

in the Weisskopf-Wigner approximation. For hk << pu, the approximate form of (8) may 
be written 

y,k . V,F(u) y , . 5  -- yL2’ j du 
( U - k .  u ) 2 + y i ’  

(9) 

In the limit y, --+ 0, yk of (9) reduces to the conventional Landau damping 
y k  - -(71wo’/2k2)(aF/ao),=,ik. This Landau damping $ of the plasmons is due to the 
resonant electrons which satisfy the condition w - k . U = 0. However, it is seen from (9) 
that the natural width of the Landau resonance is given by yc. of (6).  

3. Evaluation in the limiting cases 

The yk of (9) is the collisionless damping of the plasma waves. In general the evaluation 
of the integral over U in (9) for y k  is extremely difficult. Nevertheless, one can evaluate 
y k  of (9) for the following two limiting cases. Case (i), when ( Y , / O ~ ) , , , ~ ~  < (?;/coo), that is 
when the natural width of the Landau resonance is less than the conventional Landau 
damping. Case (ii), when ( Y , / O ~ ) , , , ~ ~  > (yk/wo). 

For (7,/wo)max < (;lk/oo), as a first approximation we can assume that the dominant 
contribution to the integral over U for y k  of (9) comes from the resonant electrons (ie 
from values oft’ in the neighborhood of the wave phase velocity w/k). This approxima- 
tion is good if dF/& does not change appreciably in the velocity interval 
(w-y,) /k  6 U 5 (w+yu)/k.  Then Y k  of (9) is approximately equal to the conventional 
Landau damping yk. 

For ( ~ , / w ~ ) , , , ~ ~  > (&/coo), as a first approximation we can assume that the dominant 
contribution to the integral over U for Y k  of (9) comes from the nonresonant electrons 
whose velocities t’ lie in the range uo 5 t’ 5 o / k .  Since w ‘v wo > k . U and since wo > y, 
w e c a n w r i t e { ( w - k . ~ ) ~ + y i } - ~  ‘v ( w - k .  u ) - ~  N ~ - ~ + w - ~ ( 2 k .  U). Foramaxwellian 
distribution of velocities the approximate value of Y k  of (9) may be written 

where 

In deriving the result of (10) from (9) we have made use of the fact that y, 2 0 for all 
U regardless of whether v >< 0, and that for a one-dimensional maxwellian distribution 
dF/du  is an odd function of U. That is, the leading nonzero contribution to the non- 
resonant damping yk of (10) comes only from the term ~ - ~ ( 2 k .  v )  in the expansion 
( w - k .  u ) - ~  2: w - ’ + ~ - ~ ( 2 k .  U). Wemay pointout that byagraphicalsolutionof(ll), 
it is relatively easy to show that g(x) is of order unity for x > 2 and is less than unity 
for x < 2. Since for plasmons w z wo , it is readily seen from (IO) that the collisionless 
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damping due to nonresonant electrons (ie y k / o o  of (10)) is of the order of ( ) J ~ / W ~ ) , , , ~ ~ .  

This result is hardly surprising since any line broadening mechanism (regardless of 
whether it is collisional or collisionless) should give rise to a damping which is of the 
order of the width of the lorentzian line. In our case the Weisskopf-Wigner broadening 
of the Cerenkov emission line is due to the damping force of the emitted radiation on the 
emitter itself. That is, this broadening is a consequence of the fact that the velocity of 
the emitting electron must decrease due to the emission process itself. 

In (3) and (4) we have neglected a rather small term corresponding to the Lamb shift 
of the particle-wave resonance condition w - k  , U 2: 0. This Lamb shift arises from 
the difference in the radiative self-energies of the quantum states /U) and Id).  However, 
one can show that the contribution to plasmon damping due to this Lamb shift is 
negligibly small if the number of electrons in a Debye sphere is very much greater than 
one. 

We should perhaps point out that one can only use the concept of a transition 
probability per unit time for plasmons if and only if the time t of interest is such that 
t >> 00 ', that is, if and only if y k  << oo since for plasmons the time of interest t 2: y ;  '. 
Furthermore, the results of the golden rule approximation (ie (1) and (2)) are valid if 
and only if this time t << 7; '. However, the results of the Weisskopf-Wigner approxi- 
mation (ie (3) and (4)) are valid for all t < y;' (see Heitler 1954). 
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